Операционные системы

Dsr степень Nvidia что это

Dsr степень Nvidia что это

Что такое NVIDIA DLSS, как она повышает FPS и улучшает графику в играх — подробное объяснение

Недавно компания NVIDIA предоставила владельцам видеокарт GeForce RTX доступ к своей новой технологии Deep Learning Super Sampling (суперсэмплинг при помощи глубокого обучения). Она стала доступна для Metro Exodus и Battlefield 5 вслед за Final Fantasy XV: Windows Edition и 3DMark Port Royal. Многие игроки отметили, что картинка в двух новых шутерах при использовании DLSS размывалась. По факту, проблема актуальна лишь для статичных изображений, тогда как на практике в таких играх, как Battlefield V игрок редко долго остается неподвижным. Тем не менее, это побудило технического директора по глубокому обучению в NVIDIA Эндрю Эдельстена (Andrew Edelsten) прокомментировать наиболее волнующие сообщество вопросы. Основываясь на его ответах и информации из открытых источников, мы попытались разобраться, что вообще такое DLSS и как она работает.

Что такое DLSS?

Deep Learning Super Sampling (DLSS) — это технология NVIDIA, разработанная специально для видеокарт серии RTX. Упор делался именно на эту серию вследствие того, что видеокарты в ней оснащены высокопроизводительными тензорными ядрами, функционирующими в несколько раз быстрее стандартных CUDA ядер. Подобная производительность необходима для обработки изображений в играх с помощью нейронных сетей, но об этом чуть позже. Эта технология использует силы ИИ (искусственного интеллекта) для увеличения FPS (частоты кадров) и сглаживания картинки в играх во время сильных нагрузок на видеокарту. С DLSS игроки могут использовать более высокие разрешения и настройки, одновременно сохраняя достаточную частоту кадров.

Чтобы окончательно определиться с тем, что такое DLSS, нужно дословно разобрать само понятие Deep Learning Super Sampling. Итак, суперсэмплинг — это технология сглаживания, которая создаёт каждый кадр в разрешении большем чем разрешение монитора, после чего уменьшает его обратно. То есть количество пикселей в кадре увеличивается и таким образом технология помогает сгладить резкие контрастные переходы между пикселями разных объектов. Говоря проще, убирает «лесенку» на краях объектов, нежелательные шумы на текстурах в движении и прочие «шероховатости» изображения.

Теперь немного о глубоком обучении. «Глубокими» называются нейронные сети, состоящие более чем из 1 входного и выходного слоя, например, нейронную сеть из 4 слоев уже можно считать глубокой. Каждый нейрон нового слоя соединен со всеми нейронами предыдущего слоя при помощи «весов». Фактически веса нейронной сети кодируют силу сигнала и позволяют ей обрабатывать входную информацию. Путем множества повторяющихся вычислений, веса глубокой нейронной сети подстраиваются при помощи алгоритма обратного распространения ошибки для того, чтобы ответ на выходе нейронной сети был как можно ближе к желаемому на проверочном наборе данных.

Если немного упростить, то глубокое обучение — это множество вычислений, выполняющихся на мощном оборудовании в процессе, выполнение которого совершенствуется раз за разом. Система не учится в человеческом понимании этого слова, она просто становится лучше, снова и снова проделывая одни и те же действия.

Как работает DLSS?

Работает DLSS при помощи нейронной сети. Процесс её «обучения» происходит на суперкомпьютере. Сети подаются кадры игры без сглаживания. Эти кадры проходят обработку, и на выходе результат сравнивается с изображением, многкратно сглаженным суперсэмплингом. В течение многих повторений подбираются такие параметры нейронной сети, с которыми кадры без сглаживания после обработки становятся визуально неотличимыми от тех кадров, что были многократно сглажены суперсэмплингом. Когда такие параметры найдены, нейронная сеть считается обученной.

В итоге получается технология, использующая обученную на высококачественных примерах нейросеть, которая берет несколько кадров игры для создания суперсэмплинга и комбинирует их в финальный кадр. Вследствие чего экономится пользовательская вычислительная мощность и, соответственно, повышается FPS.

Эта технология с её выученными техниками улучшения изображения применяется и обновляется при помощи сервиса NGX. NGX — это пакет инструментов разработчика для интеграции алгоритмов глубокого обучения. Он позволяет разработчикам с легкостью интегрировать в приложения обученные нейронные сети для улучшения графики, редактирования фотографий и обработки видео.

Со стороны пользователя ничего не требуется, DLSS будет улучшаться автоматически путём обновления нейронной сети.

Где лучше использовать DLSS? Почему технология недоступна для всех разрешений?

В разных играх DLSS работает по-разному, потому что каждая игра имеет свои характеристики, основывающиеся на игровом движке, сложности наполнения и времени, затрачиваемом на обучение сети. Суперкомпьютер постоянно работает и NVIDIA продолжает обучать и улучшать нейронную сеть даже после релиза игры. И когда появляются результаты в улучшении производительности или качества изображения, NVIDIA добавляет их через обновления программного обеспечения.

DLSS разработана для увеличения частоты кадров при высокой нагрузке на видеокарту. То есть когда кадровая частота остаётся низкой при полной загрузке видеокарты и отсутствии так называемых «ботлнеков», ситуаций, в которых один из компонентов системы не даёт другим компонентам раскрыть весь свой потенциал. Если ваша игра уже работает с высокой частотой, то время визуализации кадра вашей видеокартой может оказаться меньше, чем время выполнения DLSS. В этом случае DLSS не нужна, потому что она не увеличит частоту кадров. Тем не менее, если игра сильно нагружает видеокарту (FPS находится ниже отметки в 60 кадров в секунду), то DLSS обеспечит оптимальное повышение производительности. В этом случае можно повысить свои настройки графики, чтобы получить максимальную выгоду от DLSS.

Если говорить чуть более технически, DLSS требует фиксированного количества времени видеокарты на каждый кадр для обработки данных нейросетью. Таким образом, игры, которые работают с меньшей частотой кадров или в более высоком разрешении, получают больше преимуществ от DLSS. В случае же с играми, работающими с высокой кадровой частотой или в низком разрешении, DLSS может не справиться с улучшением производительности. Когда время визуализации кадров видеокартой меньше, чем требуется для выполнения модели DLSS, технология не работает. Она активируется лишь в случаях, когда может дать прирост производительности. Доступность DLSS зависит от игры, модели видеокарты и выбранного разрешения.

А что насчёт размывания кадров?

Края объектов с DLSS остаются четкими и резкими, но без ступенек, которые есть, когда сглаживание выключено. Само «размытие» происходит для очень мелких деталей текстур и заметно только при рассмотрении статичных скриншотов вблизи монитора. В высоких разрешениях с высокой плотностью пикселей, например, 4К на 27 дюймовом мониторе, с расстояния в 0,5-1 метр, при движении в игре эти мелкие детали невозможно различить.

Как уже указывалось выше, DLSS изначально создавалась для увеличения FPS при высокой нагрузке на видеокарту. И при разработке основной упор делался на высокие разрешения (когда нагрузка доходит до максимума), а 4K (3840×2160) является наиболее тяжёлым разрешением. Работа с 4K даёт больше преимуществ, когда речь идёт о качестве изображения, так как количество входных пикселей велико. Для 4K DLSS имеется 7,4 миллиона входящих пикселей, из которых можно сгенерировать окончательный кадр, в то время как для 1920×1080 имеется только около 1.84 миллионов пикселей. Чем меньше исходных данных, тем сложнее DLSS обнаруживать особенности исходного изображения и предсказывать окончательный кадр. То есть чем меньше разрешение, тем хуже работает DLSS.

NVIDIA знает о проблеме с размытием изображения на низких разрешениях и работает над её решением. Добавляется больше обучающих данных и новых методов для повышения качества. Обучение глубокой нейронной сети продолжается, и со временем она улучшится.

Чем хуже технология TAA?

В зависимости от разрешения, настроек качества и реализации игры некоторые могут предпочесть TAA (временное, оно же темпоральное сглаживание) в одной игре и DLSS в другой. Тут стоит пояснить, что TAA — это технология сглаживания, которая берёт в расчёт несколько ранее отрисованных кадров, учитывая расположение пикселей в динамике. И на их основе сглаживает шероховатости и лесенки на краях, но при этом TAA имеет свойство немного «мылить» картинку.

Игровая индустрия использовала временное сглаживание многие годы и, по мнению вышеупомянутого Эндрю Эдельстена (Andrew Edelsten), его время скоро подойдёт к концу. Так как конечный результат работы TAA генерируется из нескольких кадров, получившееся изображение может страдать от ореолов и мерцаний при высокой скорости движения. DLSS же справляется с этим лучше во многом благодаря нейросети, способной выдавать более качественную картинку как в статике (неподвижном состоянии), так и в динамике (движении). Также, в отличие от TAA, DLSS в процессе работы реконструирует изображение до более высокого разрешения.

Какие игры уже поддерживают DLSS?

На момент написания статьи, поддержка DLSS присутствует в Final Fantasy XV: Windows Edition, 3DMark Port Royal, Battlefield 5 и Metro Exodus. И из-за существующих проблем с работой DLSS в последних двух играх, о них стоит расписать поподробнее.

В Battlefield 5 DLSS, по мнению NVIDIA, на данный момент обеспечивает значительное улучшение производительности (до 40 %) в разрешениях 4K и 2560 × 1440 при сопоставимом качестве. В дальнейшем командой разработки планируется работа над улучшением качества изображения для разрешения 1920×1080, а также для сверхшироких мониторов (например, с разрешением 3440 × 1440).

А для Metro Exodus уже есть обновление, улучшающее чёткость DLSS и общее качество изображения для всех разрешений, которые не были включены в день запуска. Также ведётся обучение DLSS для этой игры, в результате которого ожидается ещё одно повышение качества изображения.

Для каких ещё игр будет добавлена DLSS?

На данный момент, заявлено, что технология DLSS будет доступна ещё для следующих 25 игр:

Как запустить игру в большем разрешении?

Какое идеальное разрешение для ПК-игры? Спросите об этом большинство игроков и они незамедлительно ответят вам, что «максимально поддерживаемое монитором». Довольно очевидное решение. Ведь не имеет смысла рендерить графику в более высоком разрешении, если его не поддерживает ваше оборудование, верно?…Верно?

Краткий взгляд на Суперсэмплинг

Возможно, нет. В настоящее время, разработчики ПК-игр стали настоящими экспертами в том, чтобы их игры работали в 60 кадрах в секунду даже на средних конфигурациях железа(ну, по крайней мере некоторые из них), и даже бюджетные видеокарты являются невероятно производительными и эффективными. Помимо прочего, в индустрии появилась новая техника, которая заставляет игры выглядеть еще лучше. Называется она «Суперсэмплинг».

Так что делает этот Суперсэмплинг? Если просто, то он рендерит графику игр в разрешении больше, чем монитор может выдавать, а затем сжимает ее до размером стандартного разрешения монитора. Различное программное обеспечение с такими же функциями уже давно существовало, но сегодняшние видеокарты стали достаточно мощны, чтобы придать этой технологии полную поддержку.

Плюсом Суперсэмплинга является то, что вы можете видеть графику в более высоком качестве, избегая при этом некоторых базовых косяков, например, ступенчатых углов полигонов или артефактов освещения. Проще говоря, вы используете мощь вашей видеокарты для выдачи изображения в более высоком разрешении, придавая картинке хоть и незначительные, но приятные улучшения, например, уменьшением «лесенок» и улучшением эффектов освещения. Этот же эффект может быть достигнут и с помощью более сложных техник сглаживая, но теперешние видеокарты достаточно производительны, чтобы в полной мере использовать Суперсэмплинг. Минусом этой технологии, как уже можно было догадаться, является то, что зачастую кадровая частота при суперсэмплинге может очень сильно упасть, но оно и понятно, так как вашей видеокарте приходится работать в несколько раз больше.

Вверху вы можете увидеть персонажа Лусио из Overwatch в стандартном рендере и в рендере, который был увеличен на 200% с помощью технологии Суперсэмплинга. Обе картинки изображаются в разрешении 1080p, т.е. на максимальном разрешении большинства стандартных мониторов. Но изображение слева рендерится на игровом движке в 1080p, в то время как изображение справа рендерится в 4K(3840×2160). Обратите внимание насколько лучше стало выглядеть картинка, когда к ней применили оговариваемую технологию. Однако, такое улучшение, как уже было сказано, обойдется вам в уменьшенную кадровую частоту. Например, если у вас ранее в игре наблюдались стабильные 60 FPS, то с применением Суперсэмплинга они могут вполне ожидаемо опуститься до 40 или 30 FPS.

Результаты применения технологии Суперсэмплинга могут зависеть от различных конфигураций систем, а также от самих игр. Большинство энтузиастов в сфере компьютерных технологий уже достигли консенсуса между собой в том, что Суперсэмплинг наиболее мудро применять к старым ПК-играх или же нетребовательным консольным портам, которые обычно не требуют полной производительности от вашего компьютера. Подобные игры могут спокойно работать в 60 FPS даже под увеличенным разрешением рендера картинки. Помимо этого, Суперсэмплинг также будет интересен художникам, которым необходимо снять скриншот или записать высококачественное видео.

Вот отличный пример применения Суперсэмплинга. В данном случае использовалась технология со стороны AMD, которая имеет название «Виртуальное сверхвысокое разрешение».

Существует два способа добиться такой картинки: через программное обеспечение вашей видеокарты или через саму игру. Заметьте, что только некоторые видеоигры имеют поддержку Суперсэмплинга. Мы рекомендуем попробовать оба способа.

Опция №1: Включение Суперсэмплинга через Видеокарту

Этот метод заставит саму Windows рендерить изображение в более высоком разрешении.

Видеокарты Nvidia

Сейчас мы рассмотрим активацию этой технологии для владельцев графических ускорителей Nvidia. Откройте Панель управления Nvidia, а затем перейдите во вкладку «Регулировка размера и положения рабочего стола». Убедитесь, что вы поставите галочку напротив параметра «Замещение режима масштабирования, заданного для игр и программ».

Теперь перейдите во вкладку «Изменение разрешения» под ниспадающей вкладкой «Дисплей». Далее кликните на «Изменить разрешение» под списком доступных разрешений. Теперь кликните на кнопку «Изменить», а затем на кнопку «Создать пользовательское разрешение».

Далее вам предстоит задача по созданию разрешения, которое будет больше, чем родное разрешение вашего монитора, но при этом оно должно соответствовать его соотношению экрана. Большинство широкоэкранных мониторов имеют соотношение 16:9, про-версии таких мониторов имеют соотношение 16:10, старенькие ЖК-мониторы обычно имеют соотношение сторон 4:3. К примеру, если ваш монитор имеет разрешение экрана 1920×1080, что соответствует соотношению сторон 16:9, то вы можете выставить разрешение 2560×1440 или даже выкрутить его до полных 4K в 3840×2160(они оба являются разрешениями с соотношением сторон 16:9).

Кликните «Проверить», чтобы увидеть результат вашего выбора. Некоторые разрешения будут приняты вашим монитором, некоторые — нет. Если нет, то может отображаться пустой экран или же сообщение с ошибкой. В этом случае вам, скорее всего, потребуется воспользоваться функцией Суперсэмплинга в самих играх, но об этом далее в статье.

Если же вы смогли выставить разрешение удачно, то у вас в меню выбора разрешения Windows появится новое разрешение(нажатие правой кнопкой мыши на Рабочий стол и выбор «Разрешение экрана»). Вы можете просто выставить перед запуском игры нужное разрешение, а затем уже в ней подкорректировать его, если это будет нужно.

Однако, для Nvidia существует еще один способ воспользоваться Суперсэмплингом, и, возможно, вы найдете этот способ куда более легким для исполнения. Итак, снова зайдите в Панель управления Nvidia, а затем перейдите во вкладку «Параметры 3D→Управление параметрами 3D».

В настройках 3D, вам нужно найти два параметра: DSR — Плавность и DSR — Степень. DSR — это технология суперсэмплинга со стороны Nvidia, аббревиатура которой расшифровывается как Dynamic Super Resolution или Динамическое суперразрешение.

«DSR — Плавность» отвечает за четкость картинки. По умолчанию, плавность выставлена на 22%. Выставьте меньший процент, если вы хотите повысить четкость картинки, или больший, если хотите сделать ее плавнее. Однако знайте, что высокая плавность требует больших затрат ресурсов вашего компьютера. «DSR — Степень» буквально будет отвечать за доступные разрешения в игре. Поставьте галочки напротив всех множителей, чтобы разблокировать все возможные разрешения для рендера.

Сохраните изменения в Панели управления Nvidia и зайдите в любую игру, чтобы проверить доступные разрешения. Теперь в опциях любой игры у вас должен появиться выбор большего числа разрешений Суперсэмплинга.

Видеокарты AMD

На видеокартах AMD технология суперсэмплинга выступает под именем «Виртуальное сверхвысокое разрешение». VSR поддерживается на видеокартах Radeon HD 7790 и новее. Возможные разрешения зависят от мощности видеокарты, например, серия видеокарт Radeon R9 способна выдавать даже 4K.

Аналог от AMD также куда более дружелюбнее к пользователю по сравнению с версией Nvidia. Зайдите в Настройки программы для видеокарты Radeon, кликните на «Дисплей», а затем переключите опцию «Виртуальное сверхвысокое разрешение» на позицию «Включено». Как только вы это сделаете, игры смогут выставляться в более высоком разрешении без влияния на разрешение в Windows.

Вы также можете выставлять различные разрешения и на карточках AMD, которые не поддерживают этой технологии, но это куда более сложный и затратный по времени процесс, требующий редактирования Реестра Windows.

Опция №2: Включение Суперсэмплинга в игре

Некоторые недавние игры позволяют рендерить себя в более высоком разрешении. Расположение этой настройки может меняться в зависимости от игры, но в большинстве случаев она располагается в графических настройках. Например, опцию Суперсэмплинга можно найти в таких играх, как Shadow of Mordor, Overwatch, Batman: Arkham Knight и т.д.

Да, не все современные игры имеют поддержку Суперсэмплинга, но данная тенденция продолжает расти с каждым днем, и будет не удивительно, если в недалеком будущем все игры будут иметь поддержку этой непревзойденной технологии.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht.

Schaltfläche "Zurück zum Anfang"